If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-2x-132=0
a = 3; b = -2; c = -132;
Δ = b2-4ac
Δ = -22-4·3·(-132)
Δ = 1588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1588}=\sqrt{4*397}=\sqrt{4}*\sqrt{397}=2\sqrt{397}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{397}}{2*3}=\frac{2-2\sqrt{397}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{397}}{2*3}=\frac{2+2\sqrt{397}}{6} $
| 2(x+1)+3(x+1)=4(x+2) | | x(.20)=337000 | | 5(n-2)-(3-6n)=10n | | 4x+2=-x+5x | | X^2+1=10/3x | | -5-7(2x+7)=-82 | | (8-z)(5z+2)=0 | | 2z+5=27 | | 12+m=4m+31 | | 6+2x-7x=41 | | -6+56+16p=82 | | -6(y+9)=-5-6 | | -6+8(7+2p)=82p= | | -13(z+1)+5(4z-4)=6(z-3)+12 | | 6x-36=-84 | | -5x-6x=121 | | -3=5b/2 | | 6y+1=8y-3y | | -3/15r+3r=1/15r+31/15 | | 92+81=x | | 5x^2-11x+13=0 | | 4(2x-5)=51 | | -140=2(8r+6) | | x+1/5+6x+1/12=3x+1/3 | | -3/5r+3r=1/3r+31/3 | | z/3+6=20 | | -5x^2-11x+13=0 | | m=4.8=9.6 | | 14x^2+8x-35=0 | | 2/3r-6=-3 | | =–16x^2–30x+12 | | 9n+10=46 |